AtXTH27 plays an essential role in cell wall modification during the development of tracheary elements.
نویسندگان
چکیده
Xyloglucan endotransglucosylases/hydrolases (XTHs) are a class of enzymes capable of catalyzing the molecular grafting between xyloglucans and/or the endotype hydrolysis of a xyloglucan molecule. They are encoded by 33 genes in Arabidopsis. Whereas recent studies have revealed temporally and spatially specific expression profiles for individual members of this family in plants, their biological roles are still to be clarified. To identify the role of each member of this gene family, we examined phenotypes of mutants in which each of the Arabidopsis XTH genes was disrupted. This was undertaken using a reverse genetic approach, and disclosed two loss-of-function mutants for the AtXTH27 gene, xth27-1 and xth27-2. These exhibited short-shaped tracheary elements in tertiary veins, and reduced the number of tertiary veins in the first leaf. In mature rosette leaves of the mutant, yellow lesion-mimic spots were also observed. Upon genetic complementation by introducing the wild-type XTH27 gene into xth27-1 mutant plants, the number of tertiary veins was restored, and the lesions disappeared completely. Extensive expression of the pXTH27::GUS fusion gene was observed in immature tracheary elements in the rosette leaves. The highest level of AtXTH27 mRNA expression in the rosette leaves was observed during leaf expansion, when the tracheary elements were elongating. These findings indicate that AtXTH27 plays an essential role during the generation of tracheary elements in the rosette leaves of Arabidopsis.
منابع مشابه
Regulation of secondary cell wall development by cortical microtubules during tracheary element differentiation in Arabidopsis cell suspensions.
Cortical microtubules participate in the deposition of patterned secondary walls in tracheary element differentiation. In this study, we established a system to induce the differentiation of tracheary elements using a transgenic Arabidopsis (Arabidopsis thaliana) cell suspension stably expressing a green fluorescent protein-tubulin fusion protein. Approximately 30% of the cells differentiated i...
متن کاملHydrogen peroxide and expression of hipI-superoxide dismutase are associated with the development of secondary cell walls in Zinnia elegans.
A special form of a CuZn-superoxide dismutase with a high isoelectric point (hipI-SOD; EC 1.15.1.1) and hydrogen peroxide (H2O2) production were studied during the secondary cell wall formation of the inducible tracheary element cell-culture system of Zinnia elegans L. Confocal microscopy after labelling with 2',7'-dichlorofluorescin diacetate showed H2O2 to be located largely in the secondary ...
متن کاملActivation of Lignin Biosynthetic Enzymes During Internodal Development of Aeluropus littoralis Exposed to NaCl
Lignin is one of the major characteristics of plant secondary cell wall that provides structural rigidity for the cells and tissues and hydrophobicity to tracheary elements. Internode tissues of Aeluropus littoralis as a halophyte grass were sampled at different developmental stages (from the first to the fifth internodes ) and under different NaCl concentrations. The influences of NaCl and int...
متن کاملEXO70A1-mediated vesicle trafficking is critical for tracheary element development in Arabidopsis.
Exocysts are highly conserved octameric complexes that play an essential role in the tethering of Golgi-derived vesicles to target membranes in eukaryotic organisms. Genes encoding the EXO70 subunit are highly duplicated in plants. Based on expression analyses, we proposed previously that individual EXO70 members may provide the exocyst with functional specificity to regulate cell type- or carg...
متن کاملSignaling, transcriptional regulation, and asynchronous pattern formation governing plant xylem development
In plants, vascular stem cells continue to give rise to all xylem and phloem cells, which constitute the plant vascular system. During plant vascular development, the peptide, tracheary element differentiation inhibitory factor (TDIF), regulates vascular stem cell fate in a non-cell-autonomous fashion. TDIF promotes vascular stem cell proliferation through up-regulating the transcription factor...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- The Plant journal : for cell and molecular biology
دوره 42 4 شماره
صفحات -
تاریخ انتشار 2005